In the 18th century, Paracelsus introduced the concept of the tartaric diseases to explain how stones are formed in the human body by the precipitation of substances from body fluids, analogous to the deposition of tartar in wine casks. Today we know that in industrialized countries more than 80% of gallstones consist mainly of cholesterol, the prevalence of gallstones is about 10%, and in people between 40 and 50 years of age the 5-year incidence is about 3%.

Bile, Defined

Bile functions as the body’s “detergent” emulsification and absorption of lipids, critical for fat digestion and assimilation. Bile is produced by the liver, and is temporarily stored in the gall bladder. Bile is released into the small intestine in response to hormones, such as cholecystokinin, when fat enters the intestine.

Bile consists of a mixture of bile salts, bile acids, cholesterol, bilirubin and phospholipids chiefly phosphatidylcholine. The ratio of individual lipids are critical to maintain a stable micellar concentration. The molar ratios are typically 5:15:80 for cholesterol/phosphatidylcholine/bile salts. If the bile concentration becomes too high, cholesterol will precipitate and gallstones will form in the gall bladder, a condition known as cholelithiasis.

Bile Formation

Bile salts and acids represent oxidized derivatives of cholesterol. About 80% of the cholesterol in the body will eventually be disposed of as cholic acid. The primary bile acids, cholic acid and chenodeoxycholic acid, possess a carboxylic acid side chain which confers hydrophilic properties to the lipophilic steroid ring and creates detergent-like molecules. The liver attaches taurine and glycine to bile acids to create bile salts (taurocholate or taurochenodeoxycholate respectively). Bacterial enzymes in the colon can convert these to secondary bile acids, deoxycholate and lithocholate.

Bile and Digestion

Bile is needed for efficient uptake of oily nutrients (fats). When bile acids and bile salts first encounter ingested fats, they act as emulsifiers to create suspensions which can be broken down enzymatically. The process involves several important steps; sequentially indicated as:

1. The combined action of bile salts and pancreatic lipase initiates hydrolysis of triglycerides to free fatty acids and diglycerides, resulting in the formation of emulsions containing other lipid-soluble nutrients, including vitamins and carotenoids. The particle size of these emulsions ranges from 200 to 5,000 nm in diameter.
2. Lipase is then able to hydrolyze both di- and triglycerides to monoglycerides and free fatty acids. Lipase requires a smaller protein called colipase, another pancreatic product, to bind to triglycerides and activate the lipase.
3. Upon further release of bile salts, the lipid aggregates become smaller, from 3 to 10 nm in diameter. The normal endpoint of triglyceride digestion is a product containing 70% free fatty acid anions, 25% beta monoglycerides and 5% cholesterol. The micelles are then taken up by the epithelial cells of the brush border membrane via passive diffusion. After absorption, the fate of fatty acids depends upon their sizes. Medium chain fatty acids, with less than 10-12 carbons, pass directly from the mucosal cells into the portal blood and bind to serum albumin. Longer chain fatty acid anions are re-esterified with beta monoglycerides in the smooth endoplasmic reticulum to reform triglycerides. The newly synthesized triglycerides are complexed with apoproteins, cholesterol and phospholipids, to produce particles called chylomicrons. Chylomicrons are released from mucosal cells by exocytosis and enter the lymph, rather than entering the bloodstream directly.

Enterohypatic Circulation

Bile salts do not cross the mucosal barrier into the lymphatic system but rather they are reabsorbed as micelles in the lower region of the small intestine. Most of the bile salts released into the intestine are reabsorbed in the lower ileum where bacteria can reduce free bile acids to lithocholate and deoxycholate. The absorbed bile acids and salts are transported via the portal vein to the liver as complexes with serum albumin. The liver efficiently extracts them, conjugates them with amino acids and again secretes them as bile, which is returned to the gall bladder to continue to aid digestion. Bile salts are recirculated 2-3 times through the liver with each meal.

These statements have not been evaluated by the Food and Drug Administration. This product is not intended to diagnose, treat, cure, or prevent any disease.
mechanism, functioning to maintain the intestinal barrier against invading microorganisms.4,5

Pancrelipase. (Pancreatic lipase) Pancrelipase functions in the hydrolysis of triacylglycerol in the presence of bile salts, thus accordingly functions in the absorption of dietary fats and lipids. Accordingly, in the presence of gastric lipase, triacylglycerol is hydrolyzed to monoglycerides and free fatty acids. Pancrelipase preparations have been shown to reduce fecal fat, indicating an improvement in the fat digestive process with the use of Pancrelipase.6,7

Taurine. Taurine is a highly charged cysteine derivative, synthesized in vivo from the essential amino acid methionine. When conjugated to bile acids, an increased polarity of the bile acid results, thus increasing its amphipathic (detergent-like) properties. In one study dietary taurine was demonstrated to enhance the degradation of cholesterol and subsequent excretion via bile acids.8 In animal studies supplementary taurine was demonstrated to both increase serum HDL, and significantly decrease total cholesterol.9 Additionally, a significant increase in the concentration of fecal total bile acids has been observed with taurine supplementation.10 The action of taurine on serum cholesterol was attributed to the facilitation of hepatic cholesterol 7α-hydroxylase activity.11

Vitamin C. The enzyme noted above, cholesterol 7α-hydroxylase, is the enzyme responsible for the initial step in the catabolism of cholesterol to conjugated bile acids. This enzyme is a vitamin C dependent enzyme. In studies supplemental vitamin C was shown to reduce total plasma cholesterol and triglycerides, which was correlated to a marked modification in apoprotein patterns.12,13 In patients with gallstones, vitamin C was shown to influence the environment of the gallbladder, resulting in a higher concentration of phospholipids, along with a changed ratio of bile acids, indicating an influence of vitamin C on the formation of gallstones.14 Additionally, in women, an inverse correlation between serum ascorbic acid and the prevalence of both clinical and asymptomatic gallbladder symptomology was observed.15

Product Information
Beta Plus™ is available in bottles of 90 and 180 tablets. Beta-TCP™ is available in bottles of 90 and 180 tablets.

Product Adjuncts
MCS®, Mg-Zyme®, B6 Phosphate, Livotrít Plus® Phosphatidylcholine for Beta-TCP™

References

For more information, contact our
Client Services Department or one of our
Technical Consultants
Biotics Research Canada
Toll Free: (800) 840-1676
Box 283 Keswick ON L4P 3E2
Email: orders@bioticscan.com

These statements have not been evaluated by the Food and Drug Administration. This product is not intended to diagnose, treat, cure, or prevent any disease.